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Abstract

Large-scale multi-agent systems are often deployed across wide geographic areas, where agents
interact with heterogeneous environments. There is an emerging interest in understanding
the role of heterogeneity in the performance of the federated versions of classic reinforcement
learning algorithms. In this paper, we study synchronous federated Q-learning, which aims
to learn an optimal Q-function by having K agents average their local Q-estimates per F
iterations. We provide a characterization of the error evolution, which decays to zero as the
number of iterations T' increases. When K (E — 1) is below a certain threshold, similar to
the homogeneous environment settings, there is a linear speed-up concerning K.

The slow convergence of having £ > 1 turns out to be fundamental rather than an artifact
of our analysis. We prove that, for a wide range of stepsizes, the £, norm of the error
cannot decay faster than O (E/((1 — v)T)), where © g only hides numerical constants and
the specific choice of reward values. In addition, our experiments demonstrate that the
convergence exhibits an interesting two-phase phenomenon. For any given stepsize, there is
a sharp phase transition of the convergence: the error decays rapidly in the beginning yet
later bounces up and stabilizes.

1 Introduction

Advancements in unmanned capabilities are rapidly transforming industries and national security by enabling
fast-paced and versatile operations across domains such as advanced manufacturing (Park et all 2019),
autonomous driving (Kiran et al., 2021)), and battlefields (Mohlenhof et all 2021)). Reinforcement learning
(RL) — a cornerstone for unmanned capabilities — is a powerful machine learning method that aims to enable
an agent to learn an optimal policy via interacting with its operating environment to solve sequential decision-
making problems (Bertsekas & Tsitsiklis|, [1996; Bertsekas|, 2019)). However, the ever-increasing complexity of
the environment results in a high-dimensional state-action space, often imposing overwhelmingly high sample
collection requirements on individual agents. This limited-data challenge becomes a significant hurdle that
must be addressed to realize the potential of reinforcement learning.

In this paper, we study reinforcement learning within a federated learning framework (also known as
Federated Reinforcement Learning (Qi et al., [2021} [Jin et all 2022; Woo et al.| 2023)), wherein multiple
agents independently collect samples and collaboratively train a common policy under the orchestration of a
parameter server without disclosing the local data trajectories. A simple illustration can be found in Fig.[T]
When the environments of all agents are homogeneous, it has been shown that the federated version of classic
reinforcement learning algorithms can significantly alleviate the data collection burden on individual agents
(Woo et all 2023; [Khodadadian et al., [2022)) — error bounds derived therein exhibit a linear speedup in terms
of the number of agents.

Moreover, by tuning the synchronization period E (i.e., the number of iterations between agent synchroniza-
tion), the communication cost can be significantly reduced compared with F = 1 yet without significant
performance degradation. However, many large-scale multi-agent systems are often deployed across wide
geographic areas, resulting in agents interacting with heterogeneous environments. For instance, connected
and autonomous vehicles (CAVs) operating in various regions of a metropolitan area encounter diverse
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conditions such as varying traffic patterns, road infrastructure, and local regulations. The clients’ federa-
tion must be managed in a way that ensures the learned policy is robust to environmental heterogeneity.
There is an emerging interest in mathematically un-

derstanding the role of heterogeneity in the perfor-

mance of the federated versions of classic reinforce- (\’B
ment learning algorithms (Jin et al.;[2022; |Woo et al., e
2023}, [Doan et al. [2019; [Wang et al. 2023} Xie & ==

Song}, 2023)) such as Q-learning, policy gradient meth-

ods, and temporal difference (TD) methods. In this A -
paper, we study synchronousf fed)erated Q-learning ﬁ [D%
(FQL) in the presence of environmental heterogene-  Autonomous &= & & Autonomous
ity, which aims to learn an optimal Q-function by car Autct)puclrzous Tira;{'; seRr?:odrs car
averaging local Q-estimates per E (where F > 1) ¢

update iterations on their local data. We leave the
exploration of asynchronous Q-learning for future
work. Federated Q-learning is a natural integration of FedAvg and Q-learning (Jin et al., 2022} [Woo et al.
[2023)). The former is the most widely adopted classic federated learning algorithm (Kairouz et al., 2021
McMahan et al., 2017), and the latter is one of the most fundamental model-free reinforcement learning
algorithms (Watkins & Dayan| (1992). Despite intensive study, the tight sample complexity of Q-learning in
the single-agent setting was open until recently 2024)). Similarly, the understanding of FedAvg is
far from complete; a detailed discussion can be found in Section 2} A concise comparison of our work to the
related work can be found in Table [1

Figure 1: An illustration of a federated learning system.

Contributions. In this paper, we study synchronous federated Q-learning in the presence of environmental

heterogeneity.
« We provide a characterization of the error evolution, which decays to zero as the number of iterations
T increases. When K (E — 1) is below a threshold of O ((ke) (1 —~)~2), similar to the homogeneous

K(1—v)%€2
matching the homogenous setting (Woo et al. [2023)). In sharp contrast, when K (E — 1) is above the

threshold, heterogeneous environments lead to significant performance degradation and results in a unique

sample complexity of o <‘281H_’:|)'§f), where S, A are the state and action sets, v € (0,1) denotes the

environment settings, there is a linear speed-up concerning K and the sample complexity is 4] (M}

discount factor, and « is a scalar characterizing the environment heterogeneity. Note F is also e-dependent,
making the sample complexity does not break the lower bound of (e~2) for the single agent case.

e We prove that the convergence slowing down for E > 1 is fundamental. We show that the /., norm of the

error cannot decay faster than Op (ﬁ), where O only hides numerical constants and the specific
choice of reward values. A practical implication of this impossibility result is that, eventually, having

multiple local updates (i.e., E > 1) ends up consuming more samples (i.e., E'x more) than using £ = 1.

e Our numerical results illustrate that when the environments are heterogeneous and E > 1, there exists a
sharp phase-transition of the error convergence for not too small stepsizes: The error decays rapidly in
the beginning yet later bounces up and stabilizes. In addition, provided that the phase-transition time
can be estimated, choosing different stepsizes for the two phases can lead to faster overall convergence for
both constant and time-decaying stepsizes. We conjecture that this is because the error in phase 1 is
mainly controlled by the initial error with impacting factor decay exponentially in time, and the error in
phase 2 is dominated by the collective perturbation caused by environment heterogeneity and multiple
local updates (i.e., E > 1).

Notably, all the asymptotic notations, e.g., O and (5, unless otherwise specified, hide only numerical constants.

2 Related Work

Federated Learning. Federated learning is a communication-efficient distributed machine learning approach
that enables training global models without sharing raw local data (McMahan et al., 2017} [Kairouz et al.|
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. Federated learning has been adopted in commercial applications that involve diverse edge devices
such as autonomous vehicles (Du et al.| 2020} |Chen et al., [2021; Zeng et al, |2022; [Posner et al.l [2021}; [Peng
et all, [2023), internet of things (Nguyen et al., 2019; [Yu et all [2020), industrial automation (Liu et al.
12020)), healthcare (Yan et al., 2021; Sheller et al.| 2019), and natural language processing (Yang et al.l 2018
Ramaswamy et al.| 2019). Multiple open-source frameworks and libraries are available such as FATE, Flower,
OpenMinded-PySyft, OpenFL, TensorFlow Federated, and NVIDIA Clara.

FedAvg was proposed in the seminal work (McMahan et al., [2017)), and has been one of the most widely
implemented federated learning algorithms. It also has inspired many follow-up algorithms such as FedProx
(Li et al) [2020D), FedNova (Wang et all, [2020), SCAFFOLD (Karimireddy et all [2020)), and adaptive
federated methods (Deng et al., 2020)). Despite intensive efforts, the theoretical understanding of FedAvg is
far from complete. Most existing theoretical work on FedAvg overlooks the underlying data statistics at the
agents, which often leads to misalignment of the pessimistic theoretical predictions and empirical success (Su
let al.l [2023; [Pathak & Wainwright| [2020; Wang et al., 2022aib]). This theory and practice gap is studied in a
recent work (Su et al., 2023) in the context of solving general non-parametric regression problems. It shows
that the limiting points of the global model under FedAvg is one unbiased estimator of the underlying model
that generates the data.

Reinforcement Learning. There has been extensive research on the convergence guarantees of reinforcement
learning algorithms. A recent surge of work focuses on non-asymptotic convergence and the corresponding
sample complexity for the single-agent setup. [Bhandari et al.| (2018) analyses non-asymptotic TD learning
with linear function approximation (LFA) considering a variety of noise conditions, including noiseless,
independent noise and Markovian noise. The results were extended to TD(A) and Q-learning.
investigates the sample complexity of asynchronous Q-learning with different families of learning rates. They
also provide an extension of using variance reduction methods inspired by the seminal SVRG algorithm.
shows the sample complexity of Q-learning. Let A be the set of actions. When |A| = 1, the
sample complexity of synchronous Q-learning is sharp and minimax optimal, however, when | 4] > 2, it is
shown that synchronous Q-learning has a lower bound which is not minimax optimal.

Multi-Agent RL. tests the performance of multi-agent Proximal Policy Optimization in four
multi-agent testbeds, and it turns out the algorithm shows competitive results. The agents are homogeneous,
i.e., they fully share the parameters. When the reward functions are different across agents, full parameter
sharing is not effective. |Christianos et al| (2021)) proposes a selective parameter sharing technique, which
automatically partitions agents so that they can benefit from the parameter sharing. |Zhong et al.| (2024)
further proposes provably correct heterogeneous-agent algorithms, which allow agents to have different policy
functions, and the algorithms show superior effectiveness and stability in various challenging benchmarks.

Federated Reinforcement Learning. Woo et al.| (2023) provides sample complexity guarantees for both
synchronous and asynchronous distributed Q-learning and reveals that given the same transition probability
(i.e., homogeneous environment) for all agents, they can speed up the convergence process linearly by
collaboratively learning the optimal Q-function. [Salgia & Chi| (2025) further develops a new algorithm which
uses variance reduction techniques to estimate the Q-functions, and quantization for the Q-function to save
the communication cost. They trade off between sample complexity and communication complexity and
achieve a better sample complexity compared to [Woo et al| (2023)) under the same homogeneous setting.
Doan et al.| (2019) investigates the distributed Temporal Difference (TD) algorithm TD(0) with LFA under
the setting of multi-agent MDP, where multiple agents act in a shared environment and each agent has its
own reward function. They provide a finite-time analysis of this algorithm that with constant stepsize, the
estimates of agents can converge to a neighborhood around optimal solutions and asymptotically converge to
the optimal solutions. [Khodadadian et al.| (2022) studies on-policy federated TD learning, off-policy federated
TD learning, and federated Q-learning of homogeneous environment and reward with Markovian noise. The
sample complexity derived exhibits linear speedup with respect to the number of agents. Heterogeneous
environments are considered in |Jin et al.| (2022); Wang et al.| (2023)); Xie & Song] (2023); [Zhang et al.| (2023)).
studies federated Q-learning and policy gradient methods under the setting of different known
transition probabilities for each agent. Yet, no state sampling is considered. [Wang et al. (2023) proposes
FedTD(0) with LFA dealing with the environmental and reward heterogeneity of MDPs. They rigorously
prove that in a low-heterogeneity regime, there is a linear convergence speedup in the number of agents.
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RL Hetero- . . Lower . Finite-
WWork B Algorithm geneity Optimality bound Sampling time Task
| [Wang et al.| (2023) | TD(0) X X Pred
Xie & Song (2023)) | Policy Gradient X X X gfjﬁ’
Zhang et al[(2024) | SARSA X X gfaeg’
Khodadadian et al.J]| TD, X X Pred,
42022) Q-Learning Plan
- Q-Learning, Pred,
Jin et al | (2022) Policy Gradient x o Plan
Woo et al|(2023) | Q-Learning X X gfaeg’
. Pred,
Zheng et al.[(2023) | Q-Learning X X Plan
. Pred,
Our work Q-Learning 4 v 4 4 v Plan

Table 1: Comparison of various works in the context of FRL. Pred and Plan stand for prediction (policy
evaluation) and planning (policy optimization), respectively.

Xie & Song| (2023) uses KL-divergence to penalize the deviation of local update from the global policy, and
they prove that under the setting of heterogeneous environments, the local update is beneficial for global
convergence using their method. [Zhang et al. (2024) proposes FedSARSA using the classic on-policy RL
algorithm SARSA with linear function approximation (LFA) under the setting of heterogeneous environments
and rewards. They theoretically prove that the algorithm can converge to the near-optimal solution. Neither
Xie & Song| (2023) nor [Zhang et al.| (2024)) characterize sample complexity.

Technical Comparisons with [Woo et al.| (2023); |Zhang et al.| (2024); Wang et al.| (2023)).

While [Zhang et al.| (2024) and [Wang et al.| (2023)) examined federated versions of TD learning and SARSA,
our paper uniquely addresses federated Q-Learning, emphasizing its distinct theoretical and applicational
advantages for optimal policy learning and planning—areas inadequately covered by the former methods.
Specifically, the upper bound in|Zhang et al.| (2024) and [Wang et al.| (2023) do not indicate how fundamentally
the convergence rates are impacted by the heterogeneity x and synchronization period F, and the upper
bounds does not decay to 0 as T'— oco. In contrast, our upper bound converges to 0 as 7' — oco. Furthermore,
we derived a lower bound on the convergence rates, showing the fundamental limitation of multiple local
updates (i.e., £ > 1) in the presence of environmental heterogeneity. To the best of our knowledge, this is
the first result of its kind.

Our analysis of Theorem (1| builds upon the roadmap established by |Woo et al.| (2023), but adapting their
analysis to our setting introduces significant challenges. In [Woo et al. (2023), all agents operate in a
homogeneous environment, meaning each of the K agents shares the same underlying transition distribution.
This homogeneity allows the concentration bound on the difference between the true transition distribution
and sampled estimates to become arbitrarily small as the number of samples increases. However, in our
setting, each agent has its own environment with a distinct transition distribution. This heterogeneity
introduces a perturbation term in the error upper bound that does not decrease with additional samples.
Additionally, when E > 1 and x > 0, the term involving x(E — 1) in the upper bound becomes the dominant
term, resulting a unique sample complexity. Further technical details and implications of these adjustments
are provided in Corollary

3 Preliminary on Q-Learning

Markov decision process. A Markov decision process (MDP) is defined by the tuple (S, A, P,~, R), where S
represents the set of states, A represents the set of actions, the transition probability P : Sx.A — [0, 1] provides
the probability distribution over the next states given a current state s and action a, the reward function
R:S x A—[0,1] assigns a reward value to each state-action pair, and the discount factor v € (0,1) models
the preference for immediate rewards over future rewards. It is worth noting that P = {P(- | 5,a)}ses,aca is
a collection of |S| x |.A| probability distributions over S, one for each state-action pair (s, a).
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Policy, value function, Q-Function, and optimality. A policy 7 specifies the action-selection strategy
and is defined by the mapping 7 : S — A(A), where 7(a | s) denotes the probability of choosing action a
when in state s. For a given policy 7, the value function V™ : § — R measures the expected total discounted
reward starting from state s:

V7(s) = ]EatNTf('\St)78t+1NP('|Smat) [Z ’th(stvat) | s0 = s] , Vses.
t

The state-action value function, or Q-function Q™ : S x A — R, evaluates the expected total discounted
reward from taking action a in state s and then following policy :

Qﬂ—(s’a) = R('S?a’) + Eat~”('|5t)75t+1~P(‘|St,at) [Z rYtR(Stvat) ‘ S0 = 5,40 = a] ) V(Sva) €S x A
t

An optimal policy 7* is one that maximizes the value function for every state, that is Vs € S, V™ (s) > V7 (s)
for any other m # n*. Such a policy ensures the highest possible cumulative reward. The optimal value
function V* (shorthand for V7" ) and the optimal Q-function Q* (shorthand for Q™) are defined under the
optimal policy 7*.

The Bellman optimality equation for the value function and state-value function are:

V*(s) = mgxx[R(s, a) +y Z P(s'[s,a)V*(s")]
s'eS

* _ P(s “(s' a').
@) = R(sa) 7 3 P 0 Q')

Q-learning. Q-learning (Watkins & Dayan, [1992)) is a model-free reinforcement learning algorithm that
aims to learn the value of actions of all states by updating Q-values through iterative exploration of the
environment, ultimately converging to the optimal state-action function. Based on the Bellman optimality
equation for the state-action function, the update rule for Q-Learning is formulated as:

Qt+1(s7a) = (1 - A)Qt(sva’) + )‘[R(S7 CL) + ’7?}2’3& Qt(sla al)]7 V(Sa a) €S x A7

where s’ is sampled from the environment or the transition probability and A is the stepsize.

4 Federated Q-learning

The federated learning system consists of one parameter server (PS) and K agents. The K agents are
deployed in possibly heterogeneous yet independent environments. The K agents are modeled as Markov
Decision Processes (MDPs) with My, = (S, A, P¥,~, R) for k=1, , K, where P* = {P*(- | 5,a)}scs.0c4
are the collection of probability distributions that can be heterogeneous across agents. In the synchronous
setting, each agent k has access to a generative model, and generates a new state sample for each (s,a) via
sf(s,a) ~ P*(- | s,a), i.e., P{sf(s,a) = s’} = P*(s' | s,a) for all s’ € S, independently across state-action
pairs (s,a). For each (s,a), the global environment P(- | s,a) (Jin et al., [2022) is defined as

K
P(s' | s,a) = ;{;Pk(s’ | s,a),Vs’ (1)
with the corresponding global MDP defined as M, = (S, A, P,7, R). Define transition heterogeneity x as
gggHPC | 5,0) = P*(-| s,0) ==~ (2)
Let Q* denote the optimal Q-function of the global MDP. By the Bellman optimality equation, we have,
V(s,a),Q*(s,a) = R(s,a) + Z P(s' | 5,a)V*(s), (3)
s'es

where V*(s) = maxge 4 Q*(s,a) is the optimal value function.
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Algorithm 1 Synchronous Federated Q-Learning

The goal of federated Q-learning is to have the K nputs: discount factor 7, E, total iteration T, step-
agents collaboratively learn Q*. We consider syn-

size A, initial estimate Qg

chronous federated Q-learning, which is a natural for k € [K] do
integration of FedAvg and Q-learning (Woo et al., Qk = Qo
2023} |Jin et al., 2022)) — described in Algorithm end for

Every agent initializes its local Q* estimate as Qg
and performs standard synchronous Q-learning based
on the locally collected samples sF(s,a). Whenever
t+ 1 mod F = 0, through the parameter server,
the K agents average their local estimate of @Q; that

fort=0toT —1do
for k € [K] and (s,a) € S x A do
Qii(sa) = (1 = NQi(s,a) +
A (R(s,a) + ymaxyeca QF (sf(s,a),a’))

is, all agents report their QF, , to the parameter T if (¢ 4’; 1) mlOd lf{ = Okthen
server, which computes the average and sends back 8 Qiv1 = % 2k=1 QH—%
to agents. 9: else i .

10: Qt+1 = QH—%
5 Main Results 11: end if

12: end for

13: end for

With a little abuse of notation, let the matrix
Pk e RISIAIXISI represent the transition kernel of —14: return Qr = % Zf:l Q%
the MDP of agent k with the (s,a)-th row being
PE(- | s,a) € RISl — the transition probability of the state-action pair (s,a). For ease of exposition, we write
PE(- | s,a) = P*(s,a) as the state transition probability at the state-action pair (s,a) when its meaning is
clear from the context.

5.1 Main Convergence Results.
Let Igtk € {0, 1}ISIIAIXISI denote the local empirical transition matrix at the ¢-th iteration, defined as
Pi(s' | s,a) = 1{s' = s{(s,a)}.

Denoting JSZ“V* € RISIAIXT with the (s,a)-th entry as ISik(s,a)V* = ves ( '|s,a)V*(s"). Let Qurq :=
+ Zszl QF, 1. From lines 6, 8, and 10 of Algorithm [1} it follows that

Qi1 = KZ( NQE + AR+ 7PV,

where V}¥(s) := max,c 4 QF(s,a) for all s € S. Define

Apy = Q" — Qt-‘rla and Ag := Q" — Qo. (4)
The error iteration A; is captured in the following lemma.

Lemma 1 (Error iteration). For any t > 0,

t K
Appr =1 =020 +9A) (1-N) ZP PFV
1=0 k=1
t 1 K
A A== S PRV - V). 5
v ;( ) K; ( ) (5)

To show the convergence of [[A¢y1]|,,, we bound each of the three terms in the right-hand-side of (). The
following lemma is a coarse upper bound of errors.

Lemma 2. Choosing R(s,a) € [0, 1] for each state-action pair (s,a), and choose 0 < Qo(s,a) < ﬁ for any
(s,a) € S x A, then 0 < QF(s,a) < ﬁ, 0<Q*(s,a) < T

77

Q" —Qr|l, < ﬁ and |[V* = VF| . < % Vt>0,and k € [K]. (6)
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1—v"
In addition, as detailed in the proof of Lemma [4 and Theorem [} the boundedness in Lemma [2] enables us to

bound the second term in via invoking the Hoeffding’s inequality. It remains to bound the third term in
, for which we follow the analysis roadmap of [Woo et al.| (2023]) by a two-step procedure that is described
in Lemma [3] and Lemma [l Let

AF =Q* —QF, and x(t)=t—(t mod E), (7)

With the choice of Qg in Lemma the first term in (5 can be bounded as ||(1 — A)"1 A, Hoo < (=N

i.e., A¥ is the local error of agent k, and x(#) is the most recent synchronization iteration of ¢.

Lemma 3. Ift mod F =0, then H% Zszl PE(V* — V)

< ||A¢ll, - Otherwise,
o0

t—1

> bl

==
NE

1S~
Ezptk(v _V;k) < ”AX(t)”oo+2)\

k=1 0 k=1t'=x(t)
t—1
+ A= Z max Z (Pt/(s, a) — P(s, a)) v
k=1 t'=x(t)

where we use the convention that Zz‘,(:t);(tl) HA@ - =0.

Lemma 4. Choose A < +. For any § € (0,1), with probability at least (1 — §),

MM < 1Ay |+ —TAE = Dr+ —2y/Alog
s @ lloo 1

|S||A| KT
1—7 - 1)

WV i<Tkel[K]. (8)

To bound the £, norm of the third term in , we first invoke Lemma |3} followed by Lemma [4] It is worth
noting that directly applying Lemma [4] can also lead to a valid error bound yet the resulting bound will not
decay as T increases with proper choice of stepsizes.

Both Lemma [3| and Lemma [4] are non-trivial adaptations of the approach in [Woo et al. (2023) due to
the absence of a common optimal action for any given state in heterogeneous environments. Moreover, in
the homogeneous setting, each agent draws samples from the same true transition distribution, allowing
concentration inequalities to bound the discrepancy between the true distribution and sampled estimates.
However, this line of reasoning does not go through in the presence of environmental heterogeneity. When
k > 0, each of the K agents has its own transition distribution, and the discrepancy is captured by the
environmental heterogeneity parameter &.

Theorem 1 (Convergence). Choose E—1 < %min{f—ﬂ +} and X < +. For any 6 € (0, 5), with probability
at least 1 — 39, it holds that

2

4 1 14~ B 16 \//\ IS||AIKT
|AT||w§wexp{ 2\/(1 7)AT}+(1_7)2)\(E 1)H+7(1—'y)2 Klogié .

The first term of Theorem [I] is the standard error bound in the absence of environmental heterogeneity and
sampling noises. The second term arises from environmental heterogeneity. It is clear that when E = 1, the
environmental heterogeneity does not negatively impact the convergence. The last term results from the
randomness in sampling.

Remark 1 (Eventual zero error). It is common to choose the stepsize A based on the time horizon T. Let
A = ¢g(T') be a non-increasing function of T, and other parameters be fixed with respect to 7. As long as
A =g(T) decay in T, terms 2 and 3 in Theorem [I| will go to 0 as T increases. In addition, when A = w(1/T),
the first term will decay to 0. Conversely, the convergence bounds in [Zhang et al.| (2024) and [Wang et al.
(2023) do not decay to 0.

There is a tradeoff in the convergence rates of the first term and the remaining terms — the slower A\ decay in
T leads to faster decay in the first term but slower in the remaining terms. Forcing these terms to decay
around the same speed leads to slow overall convergence. Corollary [l follows immediately from Theorem
via carefully choosing A to balance the decay rates of different terms.
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Corollary 1. Choose (E — 1) < min +{* e L}, and X = 417,0%17(”) Let T > E. For any 6 € (0,3), with
probability at least 1 — 306,

4 32 log(TK) IS||AITK  56log*(TK) E — 1
Ar|, < + \/1o +
187l < (1=9)TK  (1-9)*% JVTK T (=92 T

Remark 2. Intuitively, both terms 1 and 2 decay as if there are T K iterations. In fact, the decay rate of the
sampling noises in Corollary [1} with respect to T'K, is the minimax optimal up to polylog factors
. The decay of the third term is controlled by environmental heterogeneity when E > 1. In sharp
contrast to the homogeneous settings, larger E significantly slows down the convergence of this term. We
show in the next subsection that this slow convergence is fundamental.

Remark 3 (Communication cost and convergence). From Corollaryl by choosing F = O(VT), and other
parameters are fixed with respect to T, we can reach the same error bound of (’)(1 /V/T) with communication
cost of O(VT), which is better than O(T).

ISIHAIK 1,2 (1=m2e
Corollary 2. Choose E —1 < + min{ 14; =} and A < %, and define 1 = 4096 log Kflﬂl;géz( E ),mg —
68k (E —v)?2 S||A|K 1—7)?
WOBE DY Jog?(U000), and a5 = 2285z log ISIAK Jog << ),

o When k =0 or E =1, for any d € (0, %), with probability at least 1 — 30, it holds that

[A7]l, <€

when T > exp{fW_l(—%)}, and A = 230;(1%, where W_1 is the Lambert W function. The

resulting sample complexity is o (%)

o When k>0 and E > 1,

—IfK(E-1)> %, for any ¢ € (0, ), with probability at least 1 — 39, it holds that
[A7[l <€
when T > exp{—W_; (——)} and \ = ﬁ . The sample complezity is O (?‘ﬂ',;;‘f)
- IfK(E-1)< %, for any ¢ € (0, ), with probability at least 1 — 39, it holds that
[A7[l <€
when T > exp{fW_l(f%)} and \ = M. The sample complezity is O (%)

Remark 4 (Sample complexity on K and E and conditional linear speedup.). From Corollary [2| we can
conclude that when the setting is homogeneous (i.e., K = 0) or the agents communicate every step (i.e.,

E = 1), the sample complexity O (%) matches the one in [Woo et al.|(2023). On the other hand,

when the setting is heterogeneous (i.e., k > 0) and E > 1, it is evident that if the total computation steps
per synchronization are sufficiently small, i.e., K(E — 1) < O((ke)~!(1 — v)~2), the sample complexity
also matches the one in the homogeneous setting, where there is a linear speedup. Otherwise, the sample

. A S||A|E
complexity O (lel—H’y):Le

(i.e., E-times more) samples without achieving linear speedup.

) increases with F, meaning that multiple local rounds only consume more samples
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5.2 On the Fundamentals of Convergence Slowdown for £ > 1 in Heterogeneous Environments.

Theorem 2. Let Qo = 0. For any even K > 2, there exists a collection of {(S, A, P*, R,~) : k € [K]} where

S| =2, |A] =1, and R := {:1] fized for all MDPs in the collection, such that, for E > 2 and time-invariant
2
1

stepsize \ < jEp

E
A > CR—
AT —CR(l_V)Tﬂ

whenT/E € N and T > E-max {exp{%},exp {fW_l (—ﬁ) }} , where W_1 is the Lambert W
1 _ ritra|

unction, cg = + min 4 A7zl r1 — To| ¢ when r1 # ro and cg = 52 otherwise.
> CR 2 e ’ R 2e

Proof Sketch. Below we provide the proof sketch of Theorem [2] The full proof is deferred to Appendix [E]

The eventual slow rate convergence is due to the heterogeneous environments P* regardless of the cardinality
of the action space. In particular, we prove the slow rate when the action space is a singleton, in which
case the Q-function coincides with the V-function. The process is also known as the Markov reward process.
According to Algorithm [1f when (¢ 4+ 1) mod E # 0, we have

Qi1 = (L= NI+ XP")QF + AR.

Following Algorithm [T} we let z denote the z-th synchronization round, and obtain the following recursion
between two synchronization rounds:

Aine =APAp + ((1 - A<E>) - (I FAD 4 gw—n) (I _ ;1(1))) o, (©)

where A) £ L Z,If:l(Ak)Z and A¥ £ (1 — \)I + AyP*. While the first term on the right-hand side of @)
decays rapidly to zero, the second term is non-vanishing due to environment heterogeneity for £ > 2.
Specifically, to ensure the rapid decay of the first term, it is necessary to select a stepsize A\ = Q(%) However,

this choice results in the dominating residual error from the second term, which increases linearly with
AE =Q(1/2).

Next, we instantiate the analyses by constructing the set P* over two states and an even number of clients
with
p2k-1 — [(1) (1)] , P%* = {(1) (ﬂ , forkeN. (10)
Applying the formula of A® yields the following eigen-decomposition:
A® = (I - P) + 8P,

where P = 1117, oy & L(f +vh), Be £ V5, 11 21— (1 + )\, and v» = 1 — (1 — y)A. For this
instance of Py, the error evolution @) reduces to A.11)g = (aE(I — P)+ BEP) A.g+ k(I — P)Q* with

kg = -3 (17”2E Ll ), which further yields the following full error recursion:

1—v 1+
_ _ 1 —a? _
A.p = (oI — P)+ BLP) Ao+ T ai kel — P)Q*.
Starting from Q¢ = 0, the error can be decomposed into
z DO* z 1- azE D\ )*
A.g = BpPQ* + aE+1_aE/<;E (I-P)Q". (11)

The two terms of the error are orthogonal and both non-vanishing. Therefore, it remains to lower bound the
maximum magnitude of two coefficients irrespective of the stepsize A. To this end, we analyze two regimes of

2 log(T/E),
A separated by a threshold \g = (iﬁ'
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o Slow rate due to small stepsize when A < )\g. Since (7 decreases as \ increases,

By > (1— (1—7)h0)™" = (1 -

o Slow rate due to environment heterogeneity when A > A\g. We show that
- E
(=T

We conclude that at least one component of the error in must be slower than the rate Q(E/T).
Remark 5. The explicit calculations are based on a set P¥ over a pair of states. Nevertheless, the evolution @
is generally applicable. Similar analyses can be extended to scenarios involving more than two states, provided
that the sequence of matrices A is simultaneously diagonalizable. For instance, the construction of the
transition kernels in can be readily extended to multiple states if the set S can be partitioned into two
different classes. The key insight is the non-vanishing residual on the right-hand side of @D when E > 2 due
to the environment heterogeneity.

1— o3
of + 2

RE

1—04E

5.3 Discussion on Time-varying Stepsize

Although using time-varying stepsize is common and simple when implementing the algorithm, it is not easy
to transfer from current time-invariant stepsize analysis to time-varying stepsize analysis. This is because in
the time-invariant stepsize analysis we are dealing with a function of one variable, however, in the time-varying
case, we are dealing with a function of T" variables.

For example, in our lower bound analysis, we picked a threshold Ay and showed that no matter X is greater or
smaller than \g, the convergence rate is greater than O (E/((1 —)T)), and we can claim we have covered
all the cases. However, for time-varying stepsize, the number of stepsizes is T', and it is not easy to generalize
a similar result by just considering several cases because each stepsize gives an additional dimension. Even if
we know the sequence is decaying, without specifying a particular family of stepsizes, it is not possible to
divide it into several cases as we did for time-invariant stepsize.

We conjecture that both approaches lead to comparable residual error levels over extended training. For
example, the stepsizes used in Figure and Figure are % and ﬁ, respectively. While the time-
decaying stepsize appears to have faster initial convergence due to its larger values, we observe that as t
increases, the convergence rates of the two strategies seem to align, suggesting a similar asymptotic behavior.

6 Experiments

Description of the setup. In our experiments, we consider K = 20 agents (Jin et all 2022), each
interacting with an independently and randomly generated 5 x 5 maze environment (S, A, P* R,~) for
k€ {1,2,---,20}. The state set S contains 25 cells that the agent is currently in. The action set contains
4 actions A = {left, up, right, down}. Thus, |S| x |A| = 100. We choose v = 0.99. For ease of verifying our
theory, each entry of the reward R € R!% is sampled from Bern(p = 0.05), which slightly departs from
a typical maze environment wherein only two state-action pairs have nonzero rewards. We choose this
reward so that ||Agl| ~ 100 = ﬁ, which is the coarse upper bound of ||A;||_ for all t. For each agent k,
its state transition probability vectors P* are constructed on top of standard state transition probability
vectors of maze environments incorporated with a drifting probability 0.1 in each non-intentional action
as in WindyCliff (Jin et al., [2022; |Paul et al.; |2019). In this way, the environment heterogeneity lies not
only in the differences of the non-zero probability values (Jin et al.| 2022} [Paul et al.l |2019)) but also in the
probability supports (i.e., the locations of non-zero entries). Our construction is more challenging: The
environment heterogeneity s as per of our environment construction was calculated to be 1.2. Yet, the
largest environment heterogeneity of the WindyCliff construction in |Jin et al.| (2022)) is about 0.31.

We choose Qp = 0 € R'%°, All numerical results are based on 5 independent runs to capture the variability.
The dark lines represent the mean of the runs, while the shaded areas around each line illustrate the range
obtained by adding and subtracting one standard deviation from the mean. The maximum time duration is
T = 20,000 in our experiment since it is sufficient to capture the characteristics of the training process.

10
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Convergence behavior and two-phase phenomenon. We demonstrate through numerical simulations
that our analysis aligns with the observed behaviors. For algorithms with a time-invariant stepsize, convergence
requires sufficiently small stepsizes and a sufficiently large number of iterations 7.

To explore the impact of stepsizes on convergence, we use A € {0.9,0.5,0.2,0.1,0.05}, spanning a range within
(0,1). As shown in Figure these stepsizes are not sufficiently small, leading to a two-phase phenomenon:
the foo-norm of Ay = Q* — Q; has a rapid decay in the first phase followed by a bounce back in the second
phase. This phenomenon is distinctive to heterogeneous settings. In contrast, Figure indicates that in
homogeneous environments, no drastic bounce occurs, irrespective of the stepsize. Note that if multiple plots
on the same page share the same legend, we display the legend only once for clarity.

Figure [4a] (light blue curve) demonstrates that with a sufficiently small stepsize, such as A = ﬁ, the error
continuously decreases, reaching approximately 24 by iteration 20,000.

A useful practice implication of our results is that: While constant stepsizes are often used in reinforcement
learning problems because of the great performance in applications as described in [Sutton & Bartol (2018)),
they suffer significant performance degradation in the presence of environmental heterogeneity.

Impacts of the synchronization period E. In homogeneous settings (refer to Figure [5[in Appendix

, the synchronization period F has negligible impact, consistent with prior findings in the literature

(Woo et al.| 2023} [Khodadadian et al.l [2022)). However, under heterogeneous conditions, larger E values

lead to increased final error across the five constant stepsizes, as depicted in Figure [3| and Figure This
1

degradation persists even with time-decaying stepsizes A\; = i A8 shown in Figure @ We hypothesize that

larger E values require either smaller or more rapidly decaying stepsizes to mitigate the degradation caused
by increased synchronization periods.

Potential utilization of the two-phase phenomenon. As shown in Figures [2a] and |3] in the presence of
environmental heterogeneity, the smaller the stepsizes, the smaller error ||A||, can reach and less significant
of the error bouncing in the second phase. In our preliminary experiments, we tested small stepsizes A = 1/T
for o € {0.4,0.5,--- , 1}, which eventually lead to small errors yet at the cost of being extremely slow. Among
these choices, A = 1/ VT has the fastest convergence performance yet is still ~ 24 up to iteration 20,000.

100 100
—— constant stepsize = 0.05
—— constant stepsize = 0.1
—— constant stepsize = 0.2
80 80 —— constant stepsize = 0.5
constant stepsize = 0.9
60 - 60 -
2= =
= <
40 40 A
204 204
|
Ao
] T T T T T T T T T 0 T T u T ¥ T T T t
0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000
Time Time
(a) Heterogeneous environments E = 10. (b) Homogeneous environments E = 10.

Figure 2: The ¢, error of different constant stepsizes under the heterogeneous and homogenous settings.
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(c) E=40 (d) E=c0

Figure 3: Convergence behavior for constant stepsizes (0.05,0.1,0.2,0.5,0.9) under various synchronization
intervals E (1,20,40,00). In heterogeneous settings, higher £ and larger A lead to higher residual errors.

Let to be the iteration at which the error trajectory ||A||,, switches from phase 1 to phase 2. Provided that
to can be estimated, choosing different stepsizes for the two phases can lead to faster overall convergence,
compared with using the same stepsize throughout.

Figure illustrates two-phase training with different phase 1 stepsizes and phase 2 stepsize A = 1/ VT
compared with using A = 1/ VT throughout. Overall, using A = 1 / VT throughout leads to the slowest
convergence, highlighting the benefits of the two-phase training strategy. Among all two-phase stepsize
choices, the stepsize of 0.05 in the first phase results in a longer phase 1 duration (¢y = 5550) but the lowest
final error (2.75327), suggesting a better convergence. We further test the convergence performance with
respect to different target error levels, details can be found in Appendix [G.3

1

We also evaluated the two-phase training strategy using various time-decaying step sizes, including NG

i;i}:, t%p and W In all cases, Figure @ shows the two-phase training has an advantage.

We leave the estimation and characterization of tg for future work.
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Appendices
A Proof of Lemma[I]
The update of A1 is as follows:
A1 = Q" = Qi
KZ M@+ AR +PFQY)))
1 & ~
Z Q Qt)+)‘(Q R_thkvtk))
=1

K
= (1= M)A+ A ZPV*—E’“VJ“)
kf

K_ )\ K _
=(1-2) §: P—Phv*+ K,}:ff(v*—xdw
k k=1
K
:(1—/\)t+1A0+7)\Z (1—A ZP PRV
=0 k:

+ A Z (1— Z PRV
recalling that Ay = Q* — Q.

B Proof of Lemma

We first show 0 < Q¥(s,a) < ﬁ by inducting on ¢t. When ¢ = 0, this is true by the choice of Qy. Suppose
that 0 < Qf_(s,a) < 11 for any state-action pair (s,a) and any client k. Let’s focus on time ¢. When ¢ is
not a synchronization iteration (i.e., t +1 mod E # 0), we have

QF(s,0) = (1= NQF_1(5,0) + A(R(s,a) + yPF (s,) V%)
1—A

< F + A(R(s,a) + 7Pf (s, a)V}" )

where inequality (a) holds because for any s, V;* | (s) = max,e 4 QF 1(3 a) by the inductive hypothesis,

and each element of PF(s,a) € [0,1]. Then PF(s,a)V}F | < ||P}(s,
Similarly, we can show the case when ¢ is a synchronization iteration.

1_7 by Hélder’s inequality.

With the above argument, we can also show that 0 < Q*(s,a) < ﬁ for any state-action pair (s, a). Therefore,
we have that [|Q* — QF||__ < ﬁ
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Next, we show that bound on HV* - VtkHoo

[V~ V| = max [V (s) ~ VEGs)

seS

_ _ k /
gl b S SR

max |Q*(s7a) - Qf(s,a)|

s€S,acA
=[lQ" -,
1
1—7"

IN

IN

C Proof of Lemma[3

When ¢ mod E = 0, i.e., i is a synchronization round, Q¥ = Q¥ for any pair of agents k, k' € [K]. Hence,

K
%Zﬁtk(s,a)( Vt (KZPksa> (V* = Vp)
k=1

< H—ZP’“ (s, a)ll [V: = Vil

<@ QtH
=[Atllo - (12)
For general ¢, we have
XK
w2 B -vE szk Vi + Vaw = Vi)
k=1 Jo%) fo%e)
1 o~ 1 o~
K ZPtk(V K Z Ptk(vf(t) -V
k=1 0o k=1 oo
1 & -
< ||Ax(t)||oo + K ZPtk(V:(t) - Vtk) by
k=1
X
< 1Avolle + 7 2 Vi (13)
k=1
For any state s € S, we have
V;k(s) - V)f(t)(s)
= Q (5,05 (5)) — Q1) (5, ay 4 ()
(a)
< Qi (5,07 (s)) — Q5 (5,af (s))
= QF(s,af(s)) — Qi_1(s,af (s)) + Q¢_1(s. af (s)) — QF_a(s, a5 (s))
+ o QY (505 () — QY oy (s, a (s)). (14)

where inequality (a) holds because Q* Yo (8 ak(s)) < Qx(t)(s ax(t)( s)).

18
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For each ¢ such that x(t) < <t, it holds that,

Qb4 (5, af () — Qb (s, 0k (5))

=a- M@ (s, 0k (5)) + A(R(s, af (5)) + 1Pl (s, 0k () Vi) — Qb (s, (s))

2 Qh (s, af () + A (@7(s, 0k (5)) = Rls,af (5)) = 1P(s, 0k (5))V" + R(s, af (s)) + 7 Pli(s, af (5)) Vi)
= AA (s, 0k () + 97 (PE (s, af (5)) = P(s, af (s))V" + Pl (s, af () (VE = V™))

< 27[[Ab ||, + A (s, ak () = Pls,af(s)) V7,

where equality (a) follows from the Bellman equation (3)). Thus,

Vtk(s) X(t Z Qt’+1 s at s)) — Qt’(s at( )
t’—x(t)
t—1
=2\ Z HAt + A Z ( (s,af(s)) — P(s,af(s))) V. (15)
t'=x(t) t'=x(t)

Similarly, we have

Vtk(s) X(t Z Qt’+1 )(3)) - Qf'(&ai(t)(s))

t’*x(t)

> T 8t Y (P - Pl V. (6)

t'=x(t) t'=x(t)

Plugging the bounds in and in back into , we get

1o,
ST [PITWINE S 5 F R
- o0
<Al +224 Z Z
k 1t'=x(t)
| K -1
—i—w)\EZmax Z (Ptlf(s,a) —P(s,a)) V.
P P

D Proof of Lemmald

When i mod E = 0, then A¥ = Ay iy- When i mod E # 0, we have

QF =(1-NQF,+ A (R + ’Y]Sik—lvik—l>

= (1= NQF, + A (Q* — R—~PV* +R+715f_1v;’11).

19



Under review as submission to TMLR

So,
AF = (1= NAL, + My (PV = PR, VL)
= (1= NAL, +M(P = PE)V + ML (Ve = VE))

i—1
S@A=NTXOA G +9x Y A= NP - PRVT
J=x(4)
+ A Z N)TITIPR(VE — VE). (17)
J=x(4)
For any state-action pair (s,a),
(1= MDA (s, )] < (1= 2)XD || Ay - (18)
For the second term, we have
7)\2 — NP~ PRV* (19)
J=x(4) o
<|lyA Z — N TP =PRHVE 4l YD =N eF - PRy (20)
J=x() o J=x(1) .
= gl |S||AIKT
< A yimi=i —_— —_
_1_ /<;Jr1_7 Alog 5 (21)
Jj= X(z
gl gl S| AIKT
<—ANFE -1  — log ———— 22
STEAE = Dt Ao I (22)

for all (s,a) € S x A,i € [T], k € [K]. From to , since for each timestep, each agent independently
samples the next state for all state-action pairs to form the sample transition matrix, we can use Hoeffding’s
inequality by treating A(1 — A)i_j_l(Pf - PJ&)V* as the independent random variables with their absolute
values bounded by A(1 — \)"7=1[|[V*||

In addition, we have

i—1
A @B v 2aa 3 - Ak (23)
i) o J=x(4)

Combining the bounds in , , and , we get

(i S||A|KT
AR < (1= N0 Ay T NE = r+ 2y [Alog ISIAIET
127 T Al + T AE = Dt g7y [ Alog =
i1
A D (=NTHAT]
J=x(%)
< (1= =N A
—x (i S||A|IKT
1 i@ [\ (B — 1kt —2y/ Alog [SIAIET 24
+(L+9A) (17A( )f<+177 Alog —— ; (24)
where the last inequality can be shown via inducting on i — x(i) € {0,--- , E — 1}. When A < £,

A+ <a+ 0P <a+1/B)P <e<s.
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We get

|S||A| KT

¥ Y
88 e < 1830l + 3T ME = D 32y Ao =5

1—

E Proof of Theorem [1]

By Lemmal[]

t

K t K

A D * i A D *

Avpr = (1= N2+ > (1= NN (P =PIV + D (1= N2 D PE (V= VE)).
1=0 k=1 1=0 k=1

Taking the £, norm on both sides, we get

t

K
S - NN SR BV
k:

1=0

1A¢41ll < (1 =X Aol +

oo

K
1 D *
Y K Zptlii(v - ‘/;]il)
k=1

o0

We bound the three terms in the right-hand-side of the above-displayed equation separately.

Since 0 < Qo(s,a) < 7=, the first term can be bounded as

1
(L =N Al < (1 A)t“ﬁ- (25)

To bound the second term HZ (1-=NM% Zk (P - PE )V H we have

t K t K

i 1 D 53 * i 1 53 *
DA=N My Y (P PV = (1= N My D (PP =PV
=0 k=1 =0 k=1
1 K ¢ 4 B
== SN (=N ay(PF - PE)V
k=111=0

Let X; 5 = 2yA(1—\){(P* — ]Stkfi)V*. It is easy to see that E [X; ;(s,a)] = 0 for all (s,a). By Lemma we
have | X; (s, a)| < ﬁv)\(l — A\)? for all (s,a). Since the sampling across clients and across iterations are
independent, via invoking Hoeffding’s inequality, for any given ¢ € (0, 1), with probability at least 1 — 0,

t K

> (- }ZP il
] k

v 1 S||AITEK
< — .
ST 7\/ Alog 5 (26)
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To bound the third term ZE:o(l — APy H% Zszl ISt’ii(V* —VED]| , following the roadmap of Woo et al.
(2023)), we divide the summation into two parts as follows. For any SE <t < T, we have

t K
i 1 D *

D A=N MY PV VE)
i=0 k=1 0o

t ) 1 K .
=2 10" |K D PV -vh

i=0 k=1 0o

x(t)—BE _ 1 K t K
= e - D Va7 I DR PVt S gy

i=0 k=1 0o i= (t)fﬁE+1 k: 00

< Y (1 _ )\)t—x(t)—i-BE + Z (1 _ t z)\

ZP’“

1—v i=x(t)—BE+1 o
By Lemma [3]
t | K
t—i k
1= N"TN ?ZPZ(V ViF)
i=x(t)—BE+1 k=1 0o
¢
< Y =T A
i=x(t)—BE+1 k 1j=x(i
1 i—1
0 _ .
—&—7)\? kzlrrslix .Z(') (Pj (s,a) — P(s, a)) v
= J=x(i

Since ﬁf(s, a)’s are independent across time j and across state action pair (s, a), and |ﬁf (s,a) — P(s,a)V*| <

ﬁ (from Lemma , with Hoeffding’s inequality and union bound, we get for any ¢ € (0, 1), with probability
at least 1 — 4,

i—1

o o U o AT
2(:) (Pj (s,a) P(m))v < (B =Dy nt 7\ (F-Dlog == (27)
J=x(i

for all (s,a) € S x A, k € K, and i. By Lemma [l with probability at least (1 — d), we have

t

K 1—1
DORENIEVEUSE S S SN IV

=x(t)—BE+1 k=1j=x(i)

< 9y2 ' =il 5 (A Y B4 Yo ISIAIKT

<2 T Z (1-=2X) }ZZ I X(i)||oo+31_f)/( - )K+31_7 08 5
i=x(t)—BE+1 k=1 j=x(7)

6v2\2 5 672X |S||A|KT
< - » A E 12k 4+ 2 (E — 1)y Alog 2IAIRE
<2\ (E —1) X(t)fnﬂE}EXSigt 1Al + T ( )k + T 'y( )1/ Alog 5
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Thus, by applying the union bound, we get with probability at least (1 — 24),

t

S @=N"Ty ZP’f
i=x(t)-BE+1 %
<7y max |[Aypll +2M(E-1)  max  [|A )H + w(E —1)%k
T x()-BE<i<t! XMoo x()-BE<i<t! XV -y

672\ S||AIKT

—L2(E — 1)/ Mog 222

T 7( )\ Alog ——

t
oyt A L A \/ B |S||AIKT
+ DD m(lv(E 1)f<;+177 (B~ 1)log =
i=x(t)—BE+1

2
Y 2 2
=14 2\E - 1)) . 1Al + m(6A (E-1)2+XE-1)&

2 2

A2\ \/ ISI|AIKT 672\ ISI|A|KT

—/(E-1)1 E-1 log ———.

15 ( )log —— +17,Y( )\ Alog ——
The third term can be bounded as
t | X
Bk
Z(l - Y X ZPz' 4
=0 k=1 oo
B t—x(t)+BE 2 2

< —1 (1= X — [ — —
<7 _7(1 \) + (14 2\E - 1)) o 1Al +7 (6)\ (E-1)°+XNE-1))k

2 2
. 17_: \/(E_ 1t IR 67 Y- 1/ o BIAKT o8)

Combing the bounds for terms , , and , we get the following recursion holds for all rounds 7" with
probability at least (1 — 36):

1 ol 1 |S||A|TK y _
L \/ ) tX(O)4BE
1Al < (=N g gy M log == 4 g7 (1=

YI+2ME-1))  max  [[Al, +—(6A2(E D2+ MNE-1)k

x(t)-BE<i<t

2 KT 2 KT
N 17—A7 \/( E—1)log |S”fl;| 67 Xz 1Al |S\|A|

14+2ME -1 71— BE 2(F —1)? E—1
YL+2AE-1)  max A >H + NE+ <6A< )+ AE ~ 1))n

2 2
N 17 A \/(E_ D log |S||,4(1S|KT 6'y >\ / |S\|A|KT
—

ol 1 |S||A|ITK
O alog I
+ 17\/KA BT

Let

p::i(l—)\)ﬁE-i-l V(6A2(E D2+ ME -

2 2
N 17 A WE‘ D log |S||§|KT 67 g / |8||A|KT
-7

jv\/fl(ﬂog w. (29)
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With the assumption that A < ﬁ, the above recursion can be written as

1+
1Al < —=2  max |

2 x(t)-BE<Zi<t X(i)||oo+f°

Unrolling the above recursion L times where LGE <t < T, we obtain that

L-1
L+7.1 m A E : =2
A < (— )
|| t+1||oo - ( 2 ) x(t)—ngéKt H X H i i=0( 2 ) ’
l+9,, 1 2
( )k + p-

<
-2 11—y 1-9v

Choosing 3 = { (151) J L= [, /%—‘, t+1=T, we get

2
1Az, < i(l ﬂ) 5t % (1_27(1 ~M\PE 17_77(6>\2(E 124 ME - 1)k
672\ VA |S||A|KT v 1 |S||AITK
( vE + 7) \/)\(E—l)log 5 +17\/K)\10g5)
< i 1+'Y) +(1;47)2(1—)\)\/(121)T+(12_72) (6X2(E — 1) + A(E — 1))k
122 >\ 272V A |S||A|KT 2y 1 |S||A|TK
+< 1+(1_’Y)2> \/A(El)log 5 +(1—7)2\/K)\10g6
< 11vexp{ ; (1—7))\T}+ a *4V)2 exp{— (l—fy))\T}
2y 2 2 1))k
g S(6A2(E —1)2 + A(E — 1))
1292\ 2v2V/\ IS||A|KT 2y 1 IS||A|TK
+<(1 )2 \/7-1-( )>\/)\(E—1)log 5 +(17)2\/K>\10g6

2
weXp{; (17)AT}+ (12_” (6A2(E — 1) + A(E - 1))&

1442\ [ |S|IAIKT 2y \/1 IS||A|TK
+<(1_7)2\/E 1> log 5 —&-(1_7)2 K)\log 5 .

By the assumption that (£ — 1) < % the above can be further simplified as

4 1 14~2 16 \/)\ IS||AIKT
<= —=Ja= - 2 og IR E
lA7], < T exp{ 5 (1 'y))\T} + S AME — 1Dk + e Klog 5
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F Proof of Theorem

Let |A] = 1, in which case @-function coincides with the V-function. According to Algorithm |1} when
(t+1) mod E # 0, we have
Qf1 = (1= X1+ MP")Qf + AR.
Define A* £ (1 — \)I + A\yP*. We obtain the following recursion between two synchronization rounds:
Qleypyr = (AN)7QEg + ((A)° +... (AH)P7) AR.
Define

K

AD & % D 4kt (30)
k=1

Note that Q* is the fixed point under the transition kernel P, we have AR = \(I — yP)Q* = (I — A)Q*
since AL = I — A\(I — yP). Furthermore, since Q}p, ..., QK, are identical due to synchronization, we get

Qevyp = APQup + (14 AW + . AF-D) (71— AV) @
Consequently,

Ay =Q — Q(z+1)E
= APA g+ ((1-A®) = (1440 4 AED) (1-40)) @~ (31)

Next, consider |S| = 2 and even K with

PQ’“:[l O], PQ’“:E) (1)} for k € N.

Then P = %llT, where 1 denotes the all ones vector. For the above transition kernels, we have
K
1 I, {even
=Y (PHf =<7 ’
K ;( ) {P, ¢ odd.
Applying the definition of A® in yields that

_ 1 &
A®) = % > oAby
k=1

1 K
== > (1= NI+ M1 PHy
k=1
1 K ¢ ; ‘ .
:KEZEIQ)uﬂ%%a—MD“J
k=1 j=0
¢ I\ (T_ PP E\ 0 iy B
:j§6n<j>(1—x)2 (M) (1 P—I—P)+j§d(j>(1 NI (AP
1

:5((1—A—m)u(1—A+A7)f)(1—15)+(1—x+m)415
N—————

L4, £8,
= ay(I — P) + 3P,
which is the eigen-decomposition of A®). Let

Alé(1+’y)>\,/\2é(1—’y))\, V1:1—/\1,V2:1—/\2.

25



Under review as submission to TMLR

Then

(32)

Note that 0 < o < <1 and I — P and P are orthogonal projection matrices satisfying (I — P)P = 0. The

matrices for the second term of the error on the right-hand side of [31] reduce to

(I + AW 4 ..A(E*1)> (I - [1(1))
B

:< Oé((I—P)—i-z_:ﬁgP)((Oéo—al)(I—P)—F(ﬁo—Bl)P)
=0 £=0

E-1 E-1
= ((1 —a1) Y a(I=PP+(1=p) ) 55132) since ag = By = 1

£=0

)

E-1 ) B-1 ) )

= <(1 —ay) a(I-=P)+(1—p) Z BgP) since (I — P) and P are idempotent.
=0 =0

It follow that

(1 . A<E)) - (1 +AD 4 A(E—U) (1 . Am)

E-1 E-1
= ((106E)(1041) (Z%’))(IP)JF ((1512)(151) <Z@>>P

1=0 =0

: >
Lep =0

Applying yields that

vy (1-vE 1-vEF
KE = —= — .
2\ 1—v T+

It follows from that the error evolves as
AGyne = (QE(I - P)+ ﬁEP) A.p+re(I - P)Q*,

which further yields the following full recursion of the error:

z—1

A.p = (ap(I —P)+B8eP) Mo+ (ap(I - P) + BeP) kp(I — P)Q
=0
z—1
= (ap(I = P)+ BP) Ao+ Y (ap(I — P) + B P) k(I — P)Q*
=0
since (ag(I — P)+ BEP)I8 = al5(I — P) + B5P, VL €N
= (aB (I~ P)+ BP) Ao + 1 (1 ~ P)Q'
—ag

z

l -« D * Z D)*
— (ag+ . E/ﬂ;) (I — P)Q* + B5PQ*,
—ap

where the last equality applied the zero initialization condition.
Note that (I — P)Q* and PQ* are orthogonal vectors. Since |S| = 2, we have

1 min{[[(I = P)Q" |, 1PQ" |} { o }
A, > —||A, > - ma %+ kgel, 0% ¢ -
182l 2 51421, o x {10k + =B, 5
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Let R = [:1}, since Q* = (I —yP)"'R= (I — P)R+ ﬁPR, we obtain that
2

B\ . Lirg—re B ) I 5 1 Ty 4T
I—-P = —-P)R=— PO* = PR = .
( )Q ( )R 2 L"z — TJ ’ Q 11— R 2(1 — fy) [7"1 + 79
5 V2 5 V2
I—P)Q*|ly = L= |ry — POl — ,
(I¢ )Q" |2 5 |r1 — 72, | PQ*|2 21 =) |1 + 72|
When 71 = 7y, the error A, g reduces to 8% PQ*, and 1ALE |l 1 P g |r1 + 72| |8%]; otherwise, min{||(I —

P)Q*||2, |PQ* |2} = ? min{|r; — 2|, 7= = |r1 4+ r2|}. It remains to analyze the coefficients as functions of \.
To this end, we introduce the following lemma:

Lemma 5. The following properties hold:

1. Negativity: kg < 0;

2. Monotonicity: l’ng is monotonically decreasing for A € (0, ﬁ),

3. Upper bound: [{7E-| < 125 for A € (0, 7);

. M2 (E-1
4. Lower bound: if (14 )\ < 5=, then |TEE—| > =2 (4 ),
Proof. We prove the properties separately.

1. Note that v; < v, 1 —1v1 = (1+ )\, and 1 — v = (1 —y)A. Then it follows from that

Ny E-1
= —7 — 1/1
=1
2. For the monotonicity, it suffices to show that d - — < 0. We calculate the derivative as

d kg YE(1 —vE)1 - vf) ((1—1—7) ot (1= ) 1>.

ﬁl—aE_Z(l— (1 —ag)? 1—vf 1—vF
Note that
)L ¢ Skel) [ A vy vy <0
1-vf 1—vf A\ 14+vi+- 4+ 1wt 41 -
3. For the upper bound, it suffices to show the result at A = due to the negativity and monotonicity. At
A= 1+v’ we have
27 \E
1—-ag 1—72 2_(m) ~1-A2

4. For the lower bound, the case E =1 trivially holds. Next, consider £ > 2. We have

KB _ 7 14+ —-v3) = (1 —=7)(1-rf)
l—ap  1-—72 (1—vE)+ 1 -vF)

E-1, ¢ ¢

e=1(1’2 V1)

=)+ (1 -vg)
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Note that 1 —nz < (1 —2)" <1— %mc forn>1land 0 <z < % Then, for (1 4+ )\ < ﬁ7 we have
1
= (- (L4 NF 21— (14 9AE > o,
vy =(1=(1=y)N)" >1-(1-9)AE.
Moreover, for all € [v1,v5] C [0,1] and £ — 1 < E, we have
2t > P > VlE > %
We obtain that
_ E—1 pv: _ _
B TES e S ) 1
E By = = = —( 1).
1—-v)+(1—-vy) 2\F 2\E 4
The proof is completed. O

We consider two regimes of the stepsize separated by \g = (11_05; = < ﬁ, where the dominating error is due

to the small stepsize and the environment heterogeneity, respectively:

Slow rate due to small stepsize when A < \g. Since 3% monotonically decreases as A increases,

log z) =B

B =(1— (1= = (1 —(1-)r)" = (1 B

Note that 12% € (0, 3), applying the fact log(1 — z) +z > —a? for « € [0, 3] yields that
log = logr log 2z 2 1
1 1— > — > ——.
0g< ZE)+ZE_ (zE )

zE
5 > (1_logz) Zi

zFE ez

Then we get

Slow rate due to environment heterogeneity when A > )\j. Recall that A < ﬁ Applying the
triangle inequality yields that
KE
—(1 o
( i ’1 —ag ) z

For the first term, by the negativity and monotonicity in Lemma [p| it suffices to show the lower bound

at A = A\p. Since A < ﬁ, then ap = 1 (1 — (1 —=9)A)F + (1 — (1 +7)A)F) decreases as X increases. For

Z > exp {—W_1 (—ﬁ) %, where W_; is the Lambert W function, such that (14 )X\ < %, we apply

1—a%
of + Ekp
1—04E

K
> E
1—04E

the lower bound in Lemma [5l and obtain that

log z 2 _
< MoV (E —1) - T—zE "7 (B—1) - (F - 1)72 log z .
4 - 4 ~  4F (1-=79)z

KE
1—aE

Additionally, applying the upper bound in Lemma [j] yields

(1+\ i N (k) R
1-— (675}

2 < = < .
)aE_lvz 1—72 T (1=9?)z
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Therefore,
az + 1_a%li KRE B 1+ KE ;
E l—O[EE l—aE 1_aE Qg
E-1 log » 1
> ( B )72 ] g _ i
1-7)z (1-9%)z
1
:(fjﬁp(ﬂ+vwﬁ%wxE—1mey_n
- 7 log(2)(E —1) —4E/(1+7)
(1—=7)z AE :
When r; = 7y,
ry+ 1o
8.2l = 5" 551
Iritra| B
T 2(1—y)el’
otherwise,

min{||(I — P)Q*||2, || PQ* 1—a%
82l > 2l W”“'Qhkmm@%+l ke, 53
— ap

1 Az
25 {|r1r2|, 7|7“1 +m|}max{a%+1_3§m;,ﬁg}

1 1 Y log(z)(E—1) —4E/(1+7)\ 1
> _ il
23 n{|r1 r2|, ,Y|T1 +r2|}max{<1_7)z< 15 S
1 E ylog(z)(E —1) —4E/(1+~)\ E
_2m1n{|r1 |, _7|r1+r2|}max{(1_7)T< 1B o (-

We can choose log(z) > %, FE > 2 so that (72 10g(z)(E12)—4E/(1+’Y)) > 1. Then the first term inside

the max operator is bigger. Then,

1‘ rol E
T —_—.
e TR,

1.
8-l 2 g min {ry = ral
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G Additional experiments

100
—— Phase 1 stepsize =0.05
—— Phase 1 stepsize =0.1
—— Phase 1 stepsize =0.2
804 —— Phase 1 stepsize =0.5
—— Phase 1 stepsize =0.9
—— One-phase training
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(c) Phase 2 stepsize \; = <t where ¢ = 10
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Figure 4: Choosing different stepsizes for phases 1 and 2 leads to faster overall convergence. £ = 10.
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G.1 Impacts of £ on homogeneous settings.

For the homogeneous settings, in addition to E = 10, we also consider E = {1,20,40, 00}, where E = co
means no communication among the agents throughout the entire learning process. Similar to Figure 2b]
there is no obvious two-phase phenomenon even in the extreme case when F = oo. Also, though there is
indeed performance degradation caused by larger E, the overall performance degradation is nearly negligible
compared with the heterogeneous settings shown in Figures |2al and
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Figure 5: Homogeneous federated Q-learning with varying E.
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G.2 Impacts of E on time-decaying stepsize
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Figure 6: Using time-decaying stepsize A\; = ﬁ, the overall convergence becomes worse as F increases
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Figure 7: Final error versus T. It is clear that when choosing A = ﬁ, the final error decays as T' increases.

G.3 Different target error levels.

In Figure [§] we show the error levels that these training strategies can achieve within a time horizon
T = 20,000. The tolerance levels are 10%, 5%, 3%, and 1% of the initial error |Ag||,,, respectively. At a
high level, choosing different stepsizes for phases 1 and 2 can speed up convergence.
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One-phase training with stepsize L, E = 10
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(¢c) With a phase 1 stepsize of 0.5, it meets the 10%

tolerance level at iteration 14531.

Phase 1 stepsize = 0.1, E = 10
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(e) With a phase 1 stepsize of 0.1, it meets the 10%

and 5% tolerance level at iterations 4031 and 13903,

respectively.
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(b) With a phase 1 stepsize of 0.9, it meets the 10%
tolerance level at iteration 16198.

Phase 1 stepsize = 0.2, E = 10
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(d) With a phase 1 stepsize of 0.2, it meets the 10%
and 5% tolerance level at iterations 9651 and 19517,
respectively.

Phase 1 stepsize = 0.05, E = 10
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(f) With a phase 1 stepsize of 0.05, it meets the 10%, 5%,
and 3% tolerance levels at iterations 4605, 8613, and
15998, respectively.

Figure 8: Convergence performance of different tolerance levels of different stepsize choices. The horizontal dashed lines
represent the tolerance levels not met, while the vertical dashed lines indicate the iterations at which the training processes meet

the corresponding tolerance levels.
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